Efeito Momentum da Série de Tempo.
O momento tradicional da seção transversal é uma anomalia popular e muito bem documentada. O impulso tradicional usa um universo de recursos para escolher vencedores do passado, e prevê que esses vencedores continuarão a superar seus pares no futuro também. No entanto, pesquisas acadêmicas recentes mostram que não precisamos de todo o universo de ativos para explorar o efeito momentum. Uma nova versão desta anomalia (Time Series Momentum) mostra que o retorno anterior de cada segurança (ou ativo) é um futuro preditor. O excesso de 12 meses de retorno de cada instrumento é um preditor positivo de seu retorno futuro. Um portfólio diversificado de impulso de séries temporais em todos os ativos é notavelmente estável e robusto, produzindo uma alta relação Sharpe com pouca correlação com benchmarks passivos. Uma vantagem adicional é que os retornos momentâneos das séries temporais parecem ser maiores quando os retornos do mercado de ações são mais extremos; Portanto, o impulso das séries temporais pode ser um hedge para eventos extremos.
Razão fundamental.
A pesquisa acadêmica afirma que o efeito momentum da série temporal é consistente com as teorias comportamentais dos investidores. in-reação inicial e sobre-reação antecipada aplicada à disseminação da informação.
Estratégia de negociação simples.
O universo de investimento consiste em 24 futuros de commodities, 12 pares de moeda cruzada (com 9 moedas subjacentes), 9 índices de ações desenvolvidos e 13 futuros de obrigações governamentais desenvolvidos.
Papel Fonte.
Moskowitz, Ooi, Pedersen: Time Series Momentum.
Nós documentamos o significativo "impulso da série de tempo" nos futuros do índice de ações, moeda, commodities e obrigações para cada um dos 58 instrumentos líquidos que consideramos. Encontramos persistência nos retornos de 1 a 12 meses que se invertem parcialmente em horizontes mais longos, consistentes com as teorias de sentimentos sobre a sub-reação inicial e a reação excessiva. Um portfólio diversificado de estratégias de impulso de séries temporais em todas as classes de ativos oferece retornos anormais substanciais com pouca exposição a fatores padrão de preços de ativos e funciona melhor em mercados extremos. Mostramos que os retornos ao impulso das séries temporais estão intimamente ligados às atividades de negociação de especuladores e hedgers, onde os especuladores parecem se beneficiar com isso em detrimento dos hedgers.
Outros documentos.
Baltas, Kosowski: Trend-following e Momentum Strategies in Futures Markets.
A construção de uma estratégia de impulso de séries temporais envolve a agregação ajustada pela volatilidade de estratégias univariadas e, portanto, depende muito da eficiência do estimador de volatilidade e da qualidade do sinal de negociação momentum. Usando um conjunto de dados com cotações intra-dia de 12 contratos de futuros de novembro de 1999 a outubro de 2009, investigamos essas dependências e sua relação com a lucratividade do momento e atingimos uma série de descobertas novas. Primeiro, os sinais de negociação de impulso gerados ao ajustar uma tendência linear no caminho do preço dos ativos maximizam o desempenho fora da amostra, ao mesmo tempo em que minimizam o roteamento da carteira, dominando, portanto, o sinal de troca de impulso ordinário na literatura, o sinal do retorno passado. Em segundo lugar, os resultados mostram fortes padrões de momentum na freqüência mensal de reequilíbrio, padrões de impulso relativamente fortes na frequência semanal e padrões de momentum relativamente fracos na frequência diária. Na verdade, os efeitos de reversão significativos estão documentados no horizonte de muito curto prazo. Finalmente, no que se refere à agregação ajustada de volatilidade de estratégias univariadas, o estimador da gama Yang-Zhang constitui a escolha ideal para a estimativa de volatilidade em termos de maximização da eficiência e minimização do viés e do roteamento ex post da carteira.
A construção de uma estratégia de impulso de séries temporais envolve a agregação ajustada por volatilidade de estratégias uniféricas e, portanto, depende muito da eficiência do estimador de volatilidade e da qualidade do sinal de negociação momentum. Usando um conjunto de dados com cotações intra-dia de 12 contratos de futuros de novembro de 1999 a outubro de 2009, investigamos essas dependências e sua relação com a lucratividade do momento da série e alcançamos uma série de descobertas novas. Os sinais de troca de impulso gerados pela adequação de uma tendência linear no caminho do preço dos ativos maximizam o desempenho fora da amostra, ao mesmo tempo que minimizam o volume de negócios da carteira, portanto, dominando o sinal de negociação de impulso ordinário na literatura, o sinal de retorno passado. Em relação à agregação ajustada de volatilidade de estratégias univariadas, o estimador da gama Yang-Zhang constitui a escolha ideal para a estimativa de volatilidade em termos de maximização da eficiência e minimização do viés e do roteamento ex post da carteira.
Neste trabalho, estudamos estratégias de impulso de séries temporais em mercados de futuros e sua relação com conselheiros de negociação de commodities (CTAs). Em primeiro lugar, construímos um dos conjuntos mais abrangentes de carteiras de impulso da série temporal, estendendo os estudos existentes em três dimensões: séries temporais (1974-2002), seção transversal (71 contratos) e domínio de freqüência (mensal, semanal, diariamente) . Nossas estratégias de impulso timeseries atingem os índices de Sharpe acima de 1,20 e fornecem importantes benefícios de diversificação devido ao seu comportamento anticíclico. Achamos que as estratégias mensais, semanais e diárias exibem baixa correlação cruzada, o que indica que eles capturam fenômenos de continuação de retorno distintos. Em segundo lugar, fornecemos provas de que os CTAs seguem as estratégias de impulso das séries temporais, mostrando que as estratégias de impulso das séries temporais possuem alto poder explicativo nas séries temporais dos retornos do CTA. Em terceiro lugar, com base nesse resultado, investigamos se existem restrições de capacidade em estratégias de impulso de séries temporais, ao executar regressões preditivas do desempenho da estratégia momentânea em fluxos de capital atrasados para a indústria CTA. De acordo com a visão de que os mercados de futuros são relativamente líquidos, não encontramos evidências de restrições de capacidade e esse resultado é robusto para diferentes classes de ativos. Nossos resultados têm implicações importantes para estudos de hedge funds e investidores.
Estudamos o desempenho do investimento de tendência nos mercados globais desde 1903, ampliando a evidência existente em mais de 80 anos. Nós mostramos que essa tendência - a seguir apresentou fortes retornos positivos e percebeu uma baixa correlação com as classes de ativos tradicionais de cada década há mais de um século. Analisamos os retornos das tendências seguindo vários ambientes econômicos e destacamos os benefícios de diversificação que a estratégia tem providenciado historicamente em mercados com base em ações. Finalmente, avaliamos o ambiente recente para a estratégia no contexto desses resultados de longo prazo.
As variações de várias estratégias de impulso são examinadas em uma configuração de alocação de ativos, bem como para um conjunto de carteiras da indústria. Modelos simples de retornos de impulso são considerados. A diferença entre o momento da série de tempo e o impulso transversal, com especial atenção às fontes de lucro para cada um, é esclarecido tanto teoricamente como empiricamente. Os motivos teóricos e empíricos para a eficácia da ponderação da volatilidade são fornecidos e a relação de impulso com dispersão e volatilidade em seção transversal é examinada.
Mostramos que a rentabilidade das estratégias de impulso das séries temporais sobre futuros de commodities em toda a história é fortemente sensível ao dia de início. Usando retornos diários com períodos de formação de 252 dias e períodos de espera de 21 dias, o índice de Sharpe depende de se um começar no primeiro dia, no segundo dia, e assim por diante, até o vigésimo primeiro dia. Essa sensibilidade é maior para períodos de negociação mais curtos. Os mesmos resultados também ocorrem na simulação de retornos independentes e identicamente lognormalmente distribuídos, mostrando que este não é apenas um padrão empírico, mas uma questão fundamental com as estratégias de impulso. Os gerentes de portfólio devem estar cientes desse risco latente: começar a negociar a mesma estratégia no mesmo subjacente, mas um dia depois, mesmo depois de muitas décadas, transformar uma estratégia bem-sucedida em uma mal sucedida.
Mostramos que os retornos dos fundos de futuros gerenciados e dos CTAs podem ser explicados por estratégias simples de tendências, especificamente, estratégias temporárias em séries temporais. Discutimos a intuição econômica por trás dessas taxas, incluindo as potenciais fontes de lucro devido à sub-reação inicial e a reação exagerada às notícias. Mostramos empiricamente que essas estratégias seguindo as tendências explicam os retornos dos futuros administrados. Na verdade, as estratégias de impulso das séries temporais produzem grandes correlações e altos quadrados R com índices de Futuros Gerenciados e retornos de gerente individuais, incluindo os gerentes maiores e mais bem-sucedidos. Embora os maiores gerentes de Futuros Gerenciados tenham percebido significantes alfas nos benchmarks tradicionais de longo tempo, o controle de estratégias de impulso de séries temporais leva seus alphas a zero. Finalmente, consideramos uma série de questões de implementação relevantes para estratégias de impulso de séries temporais, incluindo gerenciamento de riscos, alocação de risco em classes de ativos e horizontes de tendências, freqüência de reequilíbrio de portfólio, custos de transação e taxas.
Em um modelo de equilíbrio com investidores informados racionalmente e investidores técnicos, mostramos que a média móvel dos preços do mercado passado pode prever o preço futuro, explicando o forte poder preditivo encontrado em muitos estudos empíricos. Nosso modelo também pode explicar o impulso da série de tempo de que os preços de mercado tendem a ser positivamente correlacionados no curto prazo e negativamente correlacionados no longo prazo.
Após grandes retornos positivos em 2008, os CTAs receberam maior atenção e alocações de investidores institucionais. O desempenho subsequente foi inferior à sua média a longo prazo. Isso ocorreu em um período após a maior crise financeira desde a grande depressão. Neste artigo, usando quase um século de dados, investigamos o que normalmente acontece com a estratégia central seguida por esses fundos em crises financeiras globais. Também examinamos o comportamento das séries temporais dos mercados negociados por CTAs durante esses períodos de crise. Nossos resultados mostram que, em um período prolongado após a crise financeira, a tendência após a retomada média é inferior à metade daqueles obtidos em períodos sem crise. A evidência de crises regionais mostra um padrão semelhante. Nós também achamos que os mercados de futuros não exibem a forte previsibilidade de retorno das séries temporais prevalentes em períodos sem crise, resultando em retornos relativamente fracos para tendências seguindo as estratégias nos quatro anos imediatamente após o início de uma crise financeira.
Apresentamos uma nova classe de estratégias de impulso que se baseiam nas médias de longo prazo dos retornos ajustados ao risco e testar essas estratégias em um universo de 64 contratos de futuros líquidos. Mostramos que esta estratégia de impulso ajustada ao risco supera a estratégia de impulso da série temporal de Ooi, Moskowitz e Pedersen (2018) para quase todas as combinações de períodos de espera e de retrocesso. Nós construímos medidas de volatilidade (risco) específicos de impulso (tanto dentro como entre classes de ativos) e mostramos que essas medidas de volatilidade podem ser usadas tanto para gerenciamento de risco como para o tempo de impulso. Descobrimos que a gestão do risco de impulso aumenta significativamente os índices de Sharpe, mas, ao mesmo tempo, leva a uma inclinação negativa mais acentuada e ao risco da cauda; ao contrário, combinando gerenciamento de riscos com o momento momentâneo elimina praticamente a afinidade negativa dos retornos de impulso e reduz significativamente o risco de cauda. Além disso, o gerenciamento do risco de impulso leva a uma exposição muito menor aos fatores de mercado, valor e momentum. Como resultado, o impulso gerido por risco retorna oferece benefícios de diversificação muito maiores do que o impulso padrão retorna.
Examinamos a relação entre os retornos das tendências seguidas eo risco macroeconômico. Nossos resultados demonstram que os fatores macroeconômicos têm uma relação estatisticamente significativa com as tendências seguidas, quando permitimos as exposições dinâmicas da estratégia. Achamos que esta exposição de risco variável desta vez permite seguir tendências para gerar retornos positivos em uma ampla gama de títulos e ciclos de mercado de ações. Pesquisas anteriores documentaram que a maioria dos retornos de impulso de seção transversal derivam de exposições de risco macroeconômico. No entanto, o mesmo não é verdade para seguir a tendência em que pelo menos metade do desempenho vem dos componentes inexplicados dos retornos de futuros. Quando relacionamos o desempenho com a volatilidade condicional das variáveis macroeconômicas, nossos resultados mostram que a evolução da tendência gera maiores retornos nos períodos em que a incerteza econômica é baixa.
Analisamos as diferenças entre as estratégias baseadas no passado que diferem no condicionamento dos retornos passados em excesso de zero (estratégia de séries temporais, TS) e retornos passados em excesso da média transversal (estratégia transversal, CS). Achamos que a diferença de retorno entre essas duas estratégias deve-se principalmente a posições longas que variam no tempo que a estratégia TS assume no mercado agregado e, conseqüentemente, não tem implicações para o comportamento dos preços individuais dos ativos. No entanto, as estratégias TS e CS baseadas em índices financeiros como preditores às vezes são diferentes devido à seleção de ativos.
Os fundos de futuros administrados (às vezes chamados de CTAs) comercializam predominantemente as tendências. Existem várias maneiras de identificar as tendências, quer usando heurísticas ou medidas estatísticas, muitas vezes chamadas de "filtros". Duas medidas estatísticas importantes das tendências de preços são o impulso das séries temporais e os cruzamentos médios móveis. Mostramos empiricamente e teoricamente que esses indicadores de tendência estão intimamente conectados. Na verdade, eles são representações equivalentes em suas formas mais gerais, e eles também capturam muitos outros tipos de filtros, como o filtro HP, o filtro Kalman e todos os outros filtros lineares. Além disso, mostramos como os filtros de tendência podem ser equivalentemente representados como funções de preços passados versus retornos passados. Nossos resultados unificam e ampliam uma série de estratégias de tendências e discutimos as implicações para os investidores.
Usando um conjunto de dados de 67 índices de capital e commodities de 1969 a 2018, este estudo documenta um significativo impulso da série de tempo nos mercados internacionais de ações e commodities. Este documento documenta ainda que os fundos de investimento internacionais tendem a comprar instrumentos que tenham tido bons resultados nos últimos meses, mas eles não vendem sistematicamente aqueles que apresentaram desempenho fraco nos mesmos períodos. Nós também descobrimos que um portfólio diversificado de curto prazo ganha os maiores lucros em condições extremas de mercado, mas as intervenções de mercado dos bancos centrais nos últimos anos parecem desafiar o desempenho dessas carteiras.
O objetivo deste artigo é, portanto, estudar essa ineficiência dentro das estratégias de temporização da série temporal (TSMOM) introduzidas em um artigo importante de Moscowitz, Ooi e Pedersen [2018]. Para este fim, apresentamos uma nova classe de estratégias de impulso, estratégias de temporização de séries temporais ajustadas ao risco (RAMOM), que se baseiam em médias de retornos de futuros passados, normalizados pela sua volatilidade. Testamos essas estratégias em um universo de 64 contratos de futuros líquidos e demonstramos que as estratégias RAMOM superam as estratégias TSMOM de Moscowitz, Ooi e Pedersen [2018] para estratégias de momentum de curto, médio e longo prazos. Além disso, os sinais comerciais RAMOM possuem outra característica útil e importante: são, naturalmente, menos dependentes da alta volatilidade. Em outras palavras, as estratégias padrão de TSMOM tendem a se correlacionar positivamente (ver, por exemplo, Hurst et al. [2018]) com uma posição de longo alcance (longa chamada, longa colocação) e, como resultado, melhor desempenho no mercado volátil ambientes. Como mostramos, isso é muito menos o caso dos retornos RAMOM porque, ao ajustar os sinais de negociação de acordo com a volatilidade, nós renderizamos RAMOM retorna mais sensível a novas informações precisamente no momento em que a volatilidade é baixa. Como resultado, o desempenho superior ao RAMOM em relação ao TSMOM tende a ser negativamente relacionado à volatilidade.
As estratégias de tendência seguem posições longas em ativos com retornos passivos positivos e posições curtas em ativos com retornos passados negativos. Eles geralmente são construídos usando contratos de futuros em todas as classes de ativos, com pesos inversamente proporcionais à volatilidade e historicamente exibiram excelentes recursos de diversificação, especialmente durante as recessões dramáticas do mercado. No entanto, após uma performance impressionante em 2008, a estratégia de tendência não gerou retornos fortes no período pós-crise, 2009-2018. Este período caracterizou-se por um grande grau de co-movimento, mesmo em classes de ativos, com o universo investido sendo dividido aproximadamente nas sub-classes denominadas Risk-On e Risk-Off. Examinamos se o esquema de ponderação da volatilidade inversa, que efetivamente ignora as correlações em pares, pode se tornar subóptimo em um ambiente de correlações crescentes. Ao estender a alocação de risco-paridade de risco (contribuição de risco equivalente), construímos uma estratégia de tendência longa e curta que faz uso de princípios de paridade de risco. Não só melhoramos significativamente o desempenho da estratégia, mas também mostramos que esse aprimoramento é impulsionado principalmente pelo desempenho do esquema de ponderação mais sofisticado em regimes de correlação média extremos.
Moskowitz, Ooi e Pedersen (2018) mostram que o impulso da série de tempo entrega um alfa grande e significativo para uma carteira diversificada de vários contratos de futuros internacionais durante o período de 1985 a 2009. Embora confirmemos esses resultados com dados semelhantes, achamos que seus resultados são impulsionados pelos retornos de volatilidade (ou a chamada abordagem de paridade de risco para a alocação de ativos), em vez de em tempos de séries temporais. O alfa dos retornos mensais do momento da série temporal cai de 1,27% com pesos variáveis de volatilidade para 0,41% sem escala de volatilidade, o que é significativamente menor do que o impulso transversal alfa de 0,95%. Usando posições com volatilidade, o retorno cumulativo de uma estratégia de momentum da série temporal é maior do que a estratégia de compra e retenção; No entanto, timeseriesmomentuman buy-and-hold oferece retornos cumulativos similares se não forem dimensionados por volatilidade. O desempenho superior da estratégia de impulso da série temporal também desaparece no período pós-crise mais recente de 2009 a 2018.
Embora se saiba muito sobre a financiarização de commodities, menos se sabe sobre como investir com rentabilidade em commodities. Os estudos existentes de Commodity Trading Advisors (CTAs) não abordam adequadamente esta questão porque apenas 19% dos CTAs investem exclusivamente em commodities, apesar do seu nome. Comparamos um modelo inovador de preços de ativos de quatro fator com os benchmarks existentes usados para avaliar CTAs. Somente nosso modelo de quatro fator preços tanto commodity spot e prémio de risco de longo prazo. Em geral, nossos prémios de risco de commodities de preços modelo de quatro fatos melhor do que os prémios de risco de equidade de preços de modelos de fator de Fama-French e, portanto, é um ponto de referência apropriado para avaliar veículos de investimento em commodities.
Nos últimos 20 anos, o impulso ou a tendência seguindo as estratégias tornaram-se uma parte estabelecida da caixa de ferramentas do investidor. Apresentamos uma nova maneira de analisar as estratégias de impulso, observando o índice de informação (IR, retorno médio dividido pelo desvio padrão). Calculamos o IR teórico de uma estratégia de impulso e mostramos que se o impulso se deve principalmente à autocorrelação positiva nos retornos, o IR como função do período de formação do portfólio (look-back) é muito diferente do impulso devido à deriva (média Retorna). O IR mostra que, para períodos de aparência de alguns meses, é mais provável que o investidor aproveite a autocorrelação. No entanto, para períodos de observação mais próximos de 1 ano, o investidor é mais provável que aproveite a deriva. Comparamos os dados históricos com o IR teórico ao construir períodos estacionários. O estudo empírico conclui que há períodos / regimes onde a autocorrelação é mais importante do que a deriva na explicação do IR (particularmente antes de 1975) e outros onde a deriva é mais importante (principalmente após 1975). Concluímos nosso estudo, aplicando nossa estratégia de impulso para mais de 100 anos da Dow-Jones Industrial Average. Relatamos oscilações amortecidas no IR para períodos de aparência de vários anos e modelamos essas oscilações como uma inversão da taxa de crescimento médio.
Estudamos as estratégias de tendências temporárias (tendências-seguindo) em títulos, commodities, moedas e índices patrimoniais entre 1960 e 2018. Descobrimos que as estratégias de impulso foram consistentes tanto antes quanto depois de 1985, períodos marcados por fortes mercados urso e touro em títulos respectivamente. Nós documentamos uma série de propriedades de risco importantes. Primeiro, esses retornos são positivamente distorcidos, o que argumentamos é intuitivo, desenhando um paralelo entre as estratégias de impulso e uma estratégia de estratégia longa. Em segundo lugar, o desempenho foi particularmente forte nos piores ambientes de mercado de títulos e títulos, dando credibilidade à alegação de que a tendência-seguimento pode fornecer alfa de alíquota e equity. A imposição de restrições à estratégia para evitar que sejam de longo prazo ou títulos longos tenha potencial para melhorar ainda mais a crise alfa, mas reduz o retorno médio. Finalmente, examinamos como o desempenho variou em todas as estratégias de impulso com base em retornos com diferentes atrasos e aplicado a diferentes classes de ativos.
Propomos o uso de carteiras curtas e longas de estratégias de tendência para analisar suas características de risco e retorno. Achamos que suas exposições variam no tempo, dependem do estado do mercado, e que retorna aos seus lados longo e curto no mesmo recurso não são comparáveis. Além disso, apresentamos evidências de discernimento ocasional e tendencioso por parte dos gerentes da CTA. Nossas descobertas estão em linha com a hipótese dos mercados adaptativos, e a principal lição de nosso estudo é que os lados longo e curto devem ser diferenciados na análise de estratégias dinâmicas de investimento.
Este documento de pesquisa irá discutir as fontes de retorno estrutural (potenciais) para os índices de CTAs e commodities com base em uma revisão de artigos de pesquisa empírica de acadêmicos e profissionais. O documento abrange especificamente (a) as fontes de retorno a longo prazo para programas de futuros gerenciados e para índices de commodities; (b) as expectativas dos investidores e o contexto da carteira para estratégias de futuros; e (c) como comparar essas estratégias.
Os investidores geralmente estão preocupados com a asimetria negativa, ou a assimetria da cauda esquerda, dos retornos de equivalência patrimonial. Em resposta, eles buscam estratégias de mitigação de riscos para fornecer retornos compensatórios quando os mercados de ações caírem. Devido à sua associação com a eletricidade positiva, as estratégias de tendência são candidatos populares para mitigação de risco ou compensação de crise. Este artigo explora como um portfólio de tendências pode alcançar uma afinidade positiva e descobre que a variação do tempo no risco é o principal fator. Na verdade, qualquer carteira com uma relação positiva de Sharpe pode alcançar a afinidade positiva simplesmente variando o nível de risco assumido no tempo.
Neste artigo, os autores estudam o desempenho do investimento de tendência nos mercados globais desde 1880, ampliando a evidência existente em mais de 100 anos usando um novo conjunto de dados. Eles acham que em cada década desde 1880, o impulso das séries temporais apresentou retornos médios positivos com baixas correlações para as classes de ativos tradicionais. Além disso, o impulso da série de tempo tem funcionado bem em 8 dos 10 dos maiores períodos de crise ao longo do século, definidos como os maiores descontos para um portfólio de ações / obrigações de 60/40. Por fim, o impulso das séries temporais apresentou um bom desempenho em diferentes ambientes macro, incluindo recessões e booms, guerra e tempo de paz, regimes de taxas de juros baixos e baixos e períodos de alta e baixa inflação.
Hedging carteiras de ações contra o risco de grandes retiradas é notoriamente difícil e caro. A retenção e o contínuo rolamento, opções de venda de dinheiro no S & P 500 é uma estratégia muito onerosa, se confiável, para se proteger contra as vendas do mercado. A retenção de títulos do Tesouro dos Estados Unidos, ao mesmo tempo que proporciona um rendimento de longo prazo positivo e previsível, é geralmente uma estratégia de hedge-hedge não confiável, uma vez que a correlação negativa de vínculo-patrimônio pós-2000 é uma raridade histórica. As carteiras longas de proteção de crédito de ouro e longo parecem se sentar entre puts e bonds em termos de custo e confiabilidade. Em contraste com esses investimentos passivos, investigamos duas estratégias dinâmicas que parecem ter gerado desempenho positivo em longo prazo, mas também particularmente durante crises históricas: impulso das séries temporais de futuros e fatores de estoque de qualidade. O impulso de futuros tem paralelos com as estratégias de longo período de opções, permitindo que ele se beneficie durante as vendas de ações estendidas. A estratégia de estoque de qualidade leva posições longas em posições de alta qualidade e curtas em ações de empresas de menor qualidade, beneficiando de um efeito de "vôo para qualidade" durante as crises. Essas duas estratégias dinâmicas historicamente têm perfis de retorno não correlacionados, tornando-os hedges de risco de crise complementares. Examinamos ambas as estratégias e discutimos a forma como as diferentes variações podem ter ocorrido em crises, bem como em tempos normais, nos anos de 1985 a 2018.
O prémio de risco de Momentum é uma das premissas de risco alternativas mais importantes. Uma vez que é considerada uma anomalia de mercado, nem sempre é bem compreendida. Muitas publicações sobre este tópico são, portanto, baseadas em resultados avançados e empíricos. No entanto, alguns estudos acadêmicos desenvolveram um quadro teórico que nos permite compreender o comportamento de tais estratégias. Neste artigo, estendemos o modelo de Bruder e Gaussel (2018) ao caso multivariável. Podemos encontrar as principais propriedades encontradas na literatura acadêmica e obter novas descobertas teóricas sobre o prêmio de risco de impulso. Em particular, revisamos o retorno das estratégias seguindo a tendência e analisamos o impacto do universo de ativos no perfil risco / retorno. Comparamos também fatos estilizados empíricos com os resultados teóricos obtidos em nosso modelo. Finalmente, estudamos as propriedades de cobertura das estratégias de tendência.
Comparamos o desempenho de dois métodos de escalonamento de volatilidade em estratégias de impulso: (i) a abordagem de escala de volatilidade constante de Barroso e Santa-Clara (2018), e (ii) o método dinâmico de escalonamento de volatilidade de Daniel e Moskowitz (2018). Realizamos estratégias de impulso com base nessas duas abordagens em um pool de ativos consistindo em 55 contratos globais de futuros líquidos e comparamos esses resultados com a estratégia de tempo e as estratégias de compra e retenção. Achamos que a estratégia de impulso baseada no método de escalabilidade constante da volatilidade é a abordagem mais eficiente com um retorno anual de 15,3%.
Momento da série de tempo ⋆
Nós documentamos o significativo "impulso da série de tempo" nos futuros do índice de ações, moeda, commodities e obrigações para cada um dos 58 instrumentos líquidos que consideramos. Encontramos persistência nos retornos de um a 12 meses que reverte parcialmente em horizontes mais longos, consistentes com as teorias do sentimento da sub-reação inicial e da reação exagerada. Um portfólio diversificado de estratégias de impulso de séries temporais em todas as classes de ativos oferece retornos anormais substanciais com pouca exposição aos fatores padrão de preços de ativos e atua melhor em mercados extremos. Examinando as atividades de negociação de especuladores e hedgers, descobrimos que os especuladores lucram com o impulso das séries temporárias à custa dos hedgers.
Classificação JEL.
Agradecemos Cliff Asness, Nick Barberis, Gene Fama, John Heaton, Ludger Hentschel, Brian Hurst, Andrew Karolyi, John Liew, Matt Richardson, Richard Thaler, Adrien Verdelhan, Robert Vishny, Robert Whitelaw, Jeff Wurgler e participantes do seminário na NYU e as reuniões da AFA de 2018 em Denver, CO, para sugestões e discussões úteis, e Ari Levine e Haibo Lu para excelente assistência de pesquisa. Moskowitz agradece a Iniciativa sobre Mercados Globais na Universidade de Chicago Booth School of Business e CRSP para apoio financeiro.
Estratégias de Negociação Momentum da Série do Tempo no Mercado de Valores Global.
Gagari Chakrabarti.
Nos últimos anos, a presença de lucros anormais nos mercados de ações foi empiricamente validada, colocando assim a Hipótese do Mercado Eficaz em julgamento; e a afirmação de que o mercado sabe que tudo ou o mercado não pode ser espancado provou ser um mito. Com a presença de regras de negociação rentáveis nos mercados de ações, a especulação se torna um fenômeno comum, tornando o sistema financeiro intrinsecamente instável, vulnerável a choques e propenso a falhas. Este estudo, ao explorar a presença de regras comerciais rentáveis no mercado global nos últimos anos, descobre que os submercados dos países desenvolvidos são mais vulneráveis a especular atividades.
* Gagari Chakrabarti é professor assistente de Economia na Presidency University, Kolkata, na Índia. Suas principais áreas de pesquisa são economia financeira, finanças quantitativas e mercados financeiros como sistemas complexos. Ela obteve seu M. Sc., M. Phil. e Ph. D. Graduados em Economia pela Universidade de Calcutá.
Referências.
Informações sobre direitos autorais.
Autores e afiliações.
Gagari Chakrabarti.
Não há afiliações disponíveis.
Sobre este artigo.
Publicado em cooperação com.
Recomendações personalizadas.
Cite o artigo.
.RIS Papers Reference Manager RefWorks Zotero.
.BIB BibTeX JabRef Mendeley.
Acesso ilimitado ao artigo completo Download instantâneo Inclua o imposto de vendas local, se aplicável.
Cite o artigo.
.RIS Papers Reference Manager RefWorks Zotero.
.BIB BibTeX JabRef Mendeley.
Mais de 10 milhões de documentos científicos ao seu alcance.
Switch Edition.
&cópia de; 2017 Springer International Publishing AG. Parte de Springer Nature.
No comments:
Post a Comment